Exploring the limits of codon and anticodon size.

نویسندگان

  • J Christopher Anderson
  • Thomas J Magliery
  • Peter G Schultz
چکیده

We previously employed a combinatorial approach to identify the most efficient suppressors of four-base codons in E. coli. We have now examined the suppression of two-, three-, four-, five-, and six-base codons with tRNAs containing 6-10 nt in their anticodon loops. We found that the E. coli translational machinery tolerates codons of 3-5 bases and that tRNAs with 6-10 nt anticodon loops can suppress these codons. However, N-length codons were found to prefer N + 4-length anticodon loops. Additionally, sequence preferences, including the requirement of Watson-Crick complementarity to the codon, were evident in the loops. These selections have yielded efficient suppressors of four-base and five-base codons for our ongoing efforts to expand the genetic code. They also highlight some of the parameters that underlie the fidelity of frame maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Dielectric Constant on Codon-Anticodon pairing in mRNA and tRNA triplets by Theoretical Studies: Hartree-Fock and Density Functional Theory Calculations.

In this paper we have focused on the dielectric constant effect between various solvents with theoretical modelin the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized inwater, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules isimportant in molecular biology since numerous processes involve to interacting a prot...

متن کامل

Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli.

Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRN...

متن کامل

Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment.

Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular tRNA(2Thr) with a thre...

متن کامل

Effects of anticodon 2'-O-methylations on tRNA codon recognition in an Escherichia coli cell-free translation.

The methylation of 2'-hydroxyl groups is one of the most common posttranscriptional modifications of naturally occurring stable RNA molecules. Some tRNA species have a 2'-O-methyl nucleoside at the first position of the anticodon, and it was suggested that this modification stabilizes the codon-anticodon duplex. However, no tRNA species have been found to have the modification at the second or ...

متن کامل

Fluorine-19 nuclear magnetic resonance study of codon-anticodon interaction in 5-fluorouracil-substituted E. coli transfer RNAs.

Codon-anticodon interaction was investigated in fully active 5-fluorouracil-substituted E. coli tRNAVal1 (anticodon FAC) by 19F NMR spectroscopy. Binding of the codon GpUpA results in the upfield shift of a 19F resonance at 3.9 ppm in the central region of the 19F NMR spectrum, whereas trinucleotides not complementary to the anticodon have no effect. The same 19F resonance shifts upfield upon f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2002